Saving jet fuel with flexible sensor strips

Civil aviation is committed to making progress on the road toward a climate-neutral future. To make current and future aircraft more energy-efficient and use less jet fuel, the industry needs reliable data about the durability of materials and aerodynamics in actual flight. Researchers at Fraunhofer IZM are working on behalf of Airbus Central C&T to show how sensors could be integrated into the outer shell of aircraft fuselage to achieve robust and reliable measurements even in tough conditions in the air.

Today’s globalized world could not function without aviation, but the industry’s impact on the world’s climate must not be ignored. Reconciling the need to travel and transport goods with the vision of a sustainable future means reducing aircraft’ thirst for fuel and increasing their energy efficiency. Innovative technologies are key here: Lighter, durable materials and optimized aerodynamics are just two possible examples of “green” potential that is being tapped into. But realizing their true potential needs reliable measurements that can offer insights into how different materials behave and how stresses affect them down to the nanometer scale. This is where researchers from the Fraunhofer Institute for Reliability and Microintegration IZM in Berlin are stepping into the breach with a novel sensor skin that can be stretched over the wings of an aircraft to capture and process data in real-time.

In their research, they are zeroing in on the material that is used to coat the fuselage of most aircraft: Thermoplastic polyurethane or TPU. The team worked on integrating electronic components like sensor systems into strips of TPU to test under different types of conditions. In their eventual application in the real world, these sensor skins could measure temperature, air pressure, or vibration in the wings. One important factor to know beforehand was how resilient the strips were when exposed to different chemicals like a deicing agent or jet fuel. A full sensor skin could give aircraft manufacturers an important pool of detailed data that can tell them more about how the material degrades over time. By tracking environmental parameters and flow resistance in real-time during flight, they can also optimize the fuel consumption of their aircraft.

Even though the Fraunhofer team could draw on the Institute’s established expertise in the assembly and interconnection of stretchable electronics, it was no easy task to ready the miniature sensors integrated into the TPU for aeronautic applications. The TPU initially comes as a soft, floppy film, which makes for complicated handling and pose